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Abstract-The nonlinear analysis of laminated initially imperfect non-circular cylindrical shells is
presented. The analytical model is based on Donnell's nonlinear kinematic relations. The equations
are derived via the Hu-Washizu mixed formulation, and are expressed in terms of the transverse
displacement and the Airy stress function. The curvature of the non-circular cross-section is
expanded into a Fourier series, allowing for representation of arbitrary closed cross-sections. The
solution procedure is based on expansion of the variables into truncated trigonometric series in the
circumferential direction and a finite difference scheme in the longitudinal one. Errors introduced
by the truncated series are minimized by the Galerkin procedure and the equations are linearized
by the Newton-Raphson method. Solutions beyond the limit point are obtained by Riks' constant
arc-length algorithm. Results of both isotropic and laminated, axially loaded oval and elliptic shells
are presented. The non-circular configurations are found to be less imperfection sensitive than the
circular ones, and for largely eccentric cross-sections the shells are insensitive to initial imperfections.

INTRODUCTION

Cylindrical shell structures are commonly used in structural engineering. Their buckling
and post-buckling behaviour is of vital importance in the design of such structures, Being
highly imperfection sensitive, nonlinear analysis is essential in understanding the behaviour
of cylindrical shells,

While the behaviour of circular cylindrical shells has been extensively studied (see
Simitses, 1986), relatively few deal with the stability problem of non-circular cylindrical
shells. The buckling problem of non-circular isotropic shells is studied by Kempner and
Chen (1964, 1967), Hutchinson (1968), Feinstein et al. (l971a,b), Chen and Kempner
(1976) and Volpe et al. (1978, 1980). The analysis of laminated non-circular shells is
presented in Soldatos and Tzivanidis (1982), Sun (1991) and Sheinman and Firer (1994).
In all cited work, only the linear bifurcation analysis and initial post-buckling solution of
Donnell type equations are presented and the authors are not aware of results of the full
nonlinear analysis of non-circular cylindrical shells. Except for Sheinman and Firer (1994),
the analysis is confined to either elliptic or oval cross-sections.

In the present paper, the post-buckling problem of non-circular cylindrical shells is
considered and a solution algorithm suitable for the nonlinear analysis of initially imperfect
cylindrical shells of arbitrary closed cross-section is presented, Being a periodic function of
the circumferential angle, the shape of the cross-section is described in terms of a Fourier
series, The governing equations are derived from an energy principle, based on Donnell
type kinematic relations, which are sufficiently accurate for the analysis of shells with
buckling patterns involving several circumferential waves. The analysis is based on the
classical laminate theory and equations are expressed in terms of the transverse displacement
and the Airy stress function. Solution is based on expansion of the variables into truncated
Fourier series in the circumferential direction and a finite difference scheme in the longi
tudinal one. The equations are linearized by the Newton-Raphson method and errors
introduced by the truncated series are minimized by the Galerkin procedure. Equilibrium
states beyond the limit points are computed by Riks' constant arc-length algorithm.
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The proposed algorithm is initially validated in the analysis of a circular cylindrical
shell. Solutions for both oval and elliptic isotropic cylindrical shells are presented. Finally,
the effect of the fiber orientation in angle-ply laminated oval shells is investigated.

MATHEMATICAL FORMULATION

Let (x,y, z) be the coordinate system measured with respect to the reference surface in
the axial, circumferential and radial direction, respectively. Let u, v and W be the components
of the displacements (in the x, y and z direction, respectively) of any point in the mid
surface of the shell. Further, let ~w (x, y) be the initial geometric imperfection of the shell.
Application of the Kirchhoff-Love hypothesis as basic assumptions, and resorting to the
von Karman nonlinear kinematic approach, the strain--displacement relations at any point
of the shell can be written as

(1)

where {eo} and {K} are the strains and changes of curvature at the mid-surface given by

{eo} =

1
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(2)

( Lx and ( ),y denote the derivatives in the axial (x) and circumferential (y) directions,
respectively and the curvature R is a function of the circumferential coordinate.

Under the classical laminate theory, the strain {eo} and bending moment
{M} = {MwMypMxy? can be expressed in terms of the internal membrane forces
{N} = {Nw N vy, N,y? and changes of curvature {K} as

{eo} = [a] {N} -[b] {K}

where a = A-I, b = A-IB and d = D-BA-1B. A, Band D are, respectively, the membrane,
coupling and bending stiffnesses, defined as

(3)

where Qij are the plane stress reduced elastic stiffnesses of the laminate.
Introducing the Airy stress function (F) will enable reduction of the problem to

two dependent variables (wand F) only. The stress function is defined by the following
relationship:

{N} = {F}+{N} (4)

where {F} = {Fyy,F,xn-F,xy? is the Airy stress vector and {N} = {Nn ,ilvy ,Nxy? is the
external in-plane loading applied at the boundaries.
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The governing field and boundary equations in HI and F are derived via the Hu
Washizu mixed formulation for the potential energy (see Sheinman and Firer, 1994)

n = IIG(-{F+NV[a] {F +N} +2{F + NV[bj {K} + {KV[d] {K}

+ (F"y + Ne.) (w 2
, +2i1w,wJ + (F" + Nyy ) (W:y+2i1w,yw,y)

_ W) )-2 (F xy + Nx,.)(w,xw,y +i1w,xW,y +i1w yW,J -2 (F,xx+N,y) R -qw dxdy (5)

where q is the external applied normal pressure, Variation of n yields the following
equilibrium and compatibility nonlinear equations:

where the differential operators !f\, ff:' and ff:' I are defined as

ff:'(S,1) = S,,,Tyy~2SxyTxy+SFyTxx

ff:' I (S) = NuS, xx +2N"SYI +NvyS n'

(6)

(7)

with k = a, [j and a. The coefficients aii' hi) and ai) are expressed in terms of the laminate
properties [a], [b] and [d] and are listed in Sheinman et al. (1988).

The boundary conditions are derived in the same manner as in Sheinman and Simitses
(1977) and allow for simply supported SS" clamped CCj and free FF i edges. The subscript
i = 1, ... ,4 denotes the following in-plane conditions: i = 1 for FYI = F,l'y = 0; i = 2 for
F xy = 0, u = c; i = 3 for u = F", = 0; i = 4 for v = 0, u = c, where c is a constant.

The average end-shortening of the shell is defined as

e"v = 27[~ Lf «all (Fl'l+N,,)+aI2 (Fxx+NVl')+aI3 (-Fxy+N,y)
o y JJ

In order to accomodate for arbitrary cross-sections (see Sheinman and Firer, 1994), the
radius of curvature of the non-circular cross-section is described by a truncated Fourier
series, in which the number of terms used will be set according to the desired geometry.
The present study is confined to cross-sections with at least two axes of symmetry, thus

I

R(O)

NR

I !Y.k cos (2kO)
k~O

(9)

where 0 is the angular coordinate and N R is the number of terms in the truncated series for
the curvature. The curvatures of oval and elliptic cross-sections, which are widely discussed
in the literature (see for example Kempner and Chen, 1967; Hutchinson, 1968; Volpe et
al., 1980; Sun, 1991) can be exactly described, as shown in Sheinman and Firer (1994).
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Since the Fourier expansion of the curvature is written in terms of the angular coor
dinate (8) rather than the circumferential one (y), the field and boundary equations must
be written in terms of the angular coordinate. The transformation is effected through the
differential operators f£ k, f£ and f£ j, defined in eqn (8) as

!l'k(S) = k40S.xxxx +k 31 rS.xxxlJ +k 22 (rr.eS.xxe +r2 S.xxlie)

+k 13 (rr:oS.\{) + r2 r.liliS.xli + 3r2 r.liS.xoli + r3 S.xoeli)

+k 04 (rr~SIi +4r2 r.or.lieS.1i + r3 r.oeeS.o + 7r2 r1S.lio + 4r3 r.lieS,lio +6r3 r.oS.eoe +4r4S.lilioe)

where r = r (8) = ljR(8).

SOLUTION METHODOLOGY

In the same manner as in Sheinman and Firer (1994), the set of partial differential
equations is reduced to one of the ordinary differential equations by separation of variables
and expansion of the axial variables into truncated Fourier series as

2NW

w(x,8) = L wm(x)gm(8)
m= 0

2t\iF

F(x,8) = L F" (x)g" (8),
n = 0

(11)

NWand NF being the number of retained terms in the truncated series for wand F,
respectively, and

{

COS (im8) m = 0,1, ... , N
gm(8) = . (. 8) N 1 2Nsin un m = +, ... , .

(12)

N = NW for the w-series and N = NF for the F-series; i denotes the characteristic cir
cumferential wave number. Recourse to a characteristic wave number makes it possible, in
some cases, to substantially reduce the number of terms in the Fourier series (Narasimham
and Hoff, 1967). For general cases, in which all terms are significant, it is necessary to let
i = 1 and NW and NF sufficiently large for an accurate representation of wand F. The
initial geometric imperfection is treated in the same manner as the transverse deflection w,
i.e.

2NW

tlw(x,8) = L tlwm(x)gm (8)
m=O

(13)

allowing for representation of arbitrary initial imperfections, including those in the shape
of the natural buckling modes of the perfect shell, which have a predominant effect on the
behaviour of the shell (Arbocz, 1974).

Minimizing the errors due to the truncated Fourier series by applying the Galerkin
procedure, with cos (im8) and sin (im8) as weighting functions, yields the following ordinary
differential equations.
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Equilibrium equations.
2NW
I {d40Ao(m,p)Wm,xxxx+d3IA I (m,p)wm,xxx+ [dn A 2(m,p) -NuAo(m,p)]wm,xx

m=O

2NF
+ I {b40 A o(n,p)j",xxxx +b31 A I (n,p)j",xxx

n=O

2NW 2NF
+ I I {C1 (m,n,p)j,,(wm,xx + Awm,xx)

m=On=O

2NW
= 62nq+ NyyBo(p) + I [NuAo(m,p)Awm,xx

m=O

+ 2Nxy A 1 (m,pMwm,x +Nyy A2(m,p)AwmJ

p = 0, 1, .. , , 2NW.

Compatibility equations,
2NW
I {b40 A o(m,p)wm,xxxx +b31 A] (m,p)wm,xxx

m=O

2NF
+ I {ii40Ao(n,p)j",xxxx+ii31A](n,p)j",xxx

n=O

2Nrv 2NW

+ I I {Cl(m,k,P)(WmWk,xx+wmAwk,xx+Wm,xxAwk)
m~Ok~O

-2C2(m,k,p)wm,Awk,x+Awk,x)} = 0

p = 0, 1,.,.,2NF

1409

(14)

(15)

where 6 = I for p = 0 and 6 = 0 otherwise. The expressions for the Galerkin coefficients
A;(m,p), B;{m,p) and C;(m,n,p) are given in Sheinman and Firer (1994). The boundary
equations for all SS;, CC; and FF; boundary conditions are treated in the same way, and
are expressed as functions of the meridional coordinate only (see Firer, 1993).

By increasing the number ofdependent variables from two (wand F) to four (w, ¢, F, t/J)
where

cPm == wm,xx

the set of fourth order equations is reduced to a set of second order nonlinear differential
ones, and the number of equations is doubled. The nonlinear equations are solved by the
Newton-Raphson method and by the aid of a central finite difference scheme in the
meridional direction. Equilibrium states beyond limit points are computed by the constant
arc-length algorithm (Riks, 1979),
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NUMERICAL RESULTS AND DISCUSSION

The above outlined procedure is implemented in a general computer code, able to
handle both bifurcation buckling (see Sheinman and Firer, 1994) and full nonlinear analysis
of laminated cylindrical shells of arbitrary cross-sections. The program is especially suitable
for parametric studies of the effect of the ovality and laminate layup as well as of boundary
conditions. The solution methodology for the nonlinear response (far beyond the limit
point) is demonstrated through examples of isotropic and laminated non-circular cylindrical
shells under axial compression.

Isotropic cylindrical shell
Results from the proposed algorithm and convergence of the solution for the different

parameters are initially examined in a isotropic circular cylindrical shell with geometric
data taken from Volpe et al. (1980) : length to radius ratio LIR = 0.7, radius to thickness
ratio Rlh = 100, Poisson ratio v = 0.3 and SS3 boundary conditions. An initial axisymmetric
imperfection [~w = O.lh sin (nxIL)] is assumed, and solution is required to converge to a
0.1 % accuracy. Two finite difference meshes (25 and 35 nodes) were checked, yielding
similar results. The 25 node mesh is thus adopted for all further analyses. Results are
normalized by the classical buckling load Ncl = Eh 21[RJ3(l- v2

)]. As seen in Fig. 1, results
are in very good agreement with those calculated by the procedure of Sheinman and
Simitses (1983) with NW = 1 and NF = 2. It should be noted that, although the Fourier
terms computed by the two algorithms are completely different, the total displacement at a
given point is in very good agreement. These discrepancies and the differences in post
buckling stage are due to the different formulations on which the two algorithms are based.
Figure I presents also the results based on a ten-term approximation of the variables
(NW = NF = 10, characteristic wave number i = 1). While pre-buckling behaviour of the
shell is not affected by the addition of Fourier terms, the post-buckling behaviour is clearly
influenced, as a result of changes in the characteristic buckling wave (see also Sheinman
and Simitses, 1983) which are not accounted for in the more limited analysis. The effect of
the initial imperfection shape is shown in Fig. 2. Changes in characteristic waves in the
post-buckling stage are clearly seen. The smallest post-buckling stiffness is obtained when
the imperfection is assumed in the shape of the bifurcation buckling mode. Convergence
of both the linear (bifurcation) and nonlinear analyses of oval shells [represented by
RolR(B) = 1+ (COS (20) where ( is the eccentricity parameter and Ro is the radius of an
equivalent circular cylinder having the same perimeter as the oval one] with the number of
Fourier terms and influence of the characteristic wave number are summarized in Fig. 3.
The imperfection in this example, as in all further ones, is taken as the bifurcation shape
with maximum amplitude of ~wmax = O.lh. Both bifurcation and limit points converge from
above, while the minimum post-buckling load presents no defined convergence trend.
Bifurcation and limit point loads computed by the ten-term expansions (NW = NF = 10,
i = 1) are in very good agreement with the more exact ones (NW = NF = 20, i = 1) for all
ranges of ovality. When the characteristic wave number is taken as i = 2, the influence of
coupling between odd Fourier terms is not accounted for (see Sheinman and Firer, 1994).
This results in higher bifurcation and limit point loads, mainly in the small eccentric ovals
(~ :::;; 0.3). The discrepancies in the minimum point loads are explained by the changes in
the post-buckling behaviour which is governed by coupling of a very large number of
circumferential waves. The average end-shortening of various ovals are plotted in Fig. 4. It
is clearly seen that, as the eccentricity of the oval cross-section increases, the shell is less
imperfection sensitive, resulting in large post-buckling stiffnesses. For eccentricities larger
than ( ~ 0.75, the shell is insensitive to imperfections.

The use of an equivalent circular cylinder [Reg = Ro/(l-lm where Reg is the radius of
curvature of the weakest region of the oval cross-section, where the buckling process
initiates] proposed by Volpe et al. (1980) as an estimate for the behaviour of oval shells, is
studied in Fig. 5. Both short length (LIRo = 0.7) and medium length (LIRo = 2.0) shells
with CC I boundary conditions are studied. The equivalent radius estimate is conservative
for almost all ranges of eccentricity, and yields good results for small eccentric con
figurations; for eccentricities larger than 0.4 it is too conservative, especially in longer
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Fig. I. Total midpoint deflection and average end-shortening of circular cylindrical shells.

shells. This is explained by the decrease of the sensitivity of the oval configuration to initial
imperfections. Finally, the elliptic cross-section is considered through expansion of the
curvature into a Fourier series [see Sheinman and Firer (1994) for the classical buckling
behaviour]. The results for the post-buckling stage, versus those of oval cross-sections are
listed in Table I and plotted in Fig. 6. For the nearly circular cross-sections, both the
bifurcation and limit point loads of the two cross-sections are in good agreement. For the
two other cases, discrepancies of around 40% between results for oval and elliptic cross
sections are observed. It seems that in the medium eccentricity case this can be attributed
to the fact that the minimum curvature of the elIiptic cross-section is significantly lower
than the corresponding oval one, resulting in lower buckling loads for the elliptic cross
section. In the large eccentricity case, though minimum curvatures of the two cross-sections
are almost the same, the elliptic cross-section shows a larger region of smalI curvature, and
is thus more affected by the boundary conditions.
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Fig. 2. Average end-shortening of circular cylindrical shells with various shapes of initial imper
fections.
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Fig. 4. Average end-shortening of oval isotropic cylindrical shells.
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Fig. 5. Bifurcation and limit point loads versus the eccentricity of the oval cross-section.

Laminated cylindrical shells
The same geometric configuration considered in the isotropic examples (Ro/h = 100,

L/Ro = 2.0 and CC I boundary conditions) will now be used in the analysis ofgraphite/epoxy
angle-ply oval cylindrical shells. Material data for the graphite/epoxy laminate are:
Ell = 14 x IO ION/m2

, E22 = 0.97 X 1010 N/m2
, GI2 = 0.41 X 1010 N/m2 and V12 = 0.26. Ten

term expansions of the variables with the characteristic wave number i = 1 were used. Limit
point and bifurcation loads convergence was obtained for 25 mesh points to an error of
1%. Two layer angle-ply laminates (± PO), which behave as general orthotropic materials,
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Table 1. Normalized buckling loads of isotropic oval and elliptic cylindrical shells

Oval cross-section
Ro/R(O) = 1+~cos(20)

Eccentricity
bifurcation limit point

Elliptic cr~ss-section

Ra/R(O) = L ex, cos (2kO)
k = 0

bifurcation limit point

Small ~ = 0.1
B/A = 0.936 N = I
Medium ~ = 0.5
B/A = 0.711 N = 3
Large ~ = 1.0
B/A = 0.485 N = 4

1.025

0.552

0.056

0.807

0.444

0.051

1.013

0.381

0.078

0.792

0.321

0.075

- .. -. -. oval e= 0.5 ... ----0.4
.' .~~_..

~

:<;u- 0.2:<;

0
0 0.2 0.4 0.6 0.8

0.2

- ---- - -oval e= 1.0

:d' elliptic

--- 0.1:<;

o~/·················································· .

o 0.2 0.4 0.6 0.8

Ea17 / Ea17,(017aZ,e=O.5)

Fig. 6. Average end-shortening of oval and elliptic cylindrical shells.

were examined. Bifurcation and limit point loads versus the fiber orientation angle f3 are
plotted in Fig. 7. Behaviour trends for the limit point load are basically the same as
observed in the linear bifurcation analysis. The large eccentricity oval cross-section, being
imperfection insensitive, shows limit points almost equal to the bifurcation loads for the
whole range of angle-ply laminates. The effect of the fiber orientation in small and medium
eccentricity ovals is seen in Fig. 8. Even though limit point loads increase as f3 increases,
the pre-buckling stiffnesses decrease, up to f3 = 60c

• For 60° ~ f3 ~ 90°, no significant
change in the pre-buckling stiffness is observed, in spite of the fact that limit points are
significantly affected by changes in the fiber orientation.

CONCLUSION

A nonlinear model and solution procedure for the analysis of non-circular cylindrical
shells is presented. The non-circular cross-section is represented by expansion of the cur
vature into a trigonometric series, allowing for proper representation of arbitrary closed
non-circular geometries. The model is able to properly handle the changes in buckling
waves observed in the post-buckling behaviour of circular cylindrical shells. Imperfections
in the shape of the bifurcation buckling mode seem to be of major effect in both the buckling
and post-buckling stages. Unlike circular cylindrical shells, the behaviour of non-circular
shells is not governed by a characteristic buckling wave and strong coupling between
circumferential waves is observed. In the analysis of non-circular cylindrical shells, the
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Fig. 7. Bifurcation and limit point loads versus the fiber orientation of angle-ply laminated oval
shells.
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Fig. 8. Average end-shortening of angle-ply laminated oval shells.

eccentricity of the oval cross-section is shown to be a parameter of major importance on both
the limit point load and the imperfection sensitivity. The largely eccentric configurations are
found to be imperfection insensitive. From the analysis of angle-ply laminated oval shells
we may conclude that both the bifurcation and the nonlinear behaviour are significantly
affected by the laminate configuration. Finally, the simplified analytical model based on
the equivalent circular cylinder is found to be too conservative and not representative.
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